Design and Fabrication of a Novel Electrospinning System for Musculoskeletal Tissue Regeneration

نویسنده

  • C. Chain
چکیده

Disease and injury to human tissue, especially musculoskeletal tissue, is a prevalent concern to the public, affecting millions of people each year. Current treatment options involving autografts and allografts are hindered by limited availability and risk of immunogenicity, respectively. In order to overcome these limitations, a transdisiplinary regenerative engineering strategy has emerged with a focus on the development of biomimetic scaffolds that closely mimic the properties of the native tissues. For example, the structure of muscle tissue is characterized by oriented muscle fibers. However, fabrication of aligned nanofiber structures that mimic the anisotropic organization of muscle presents significant engineering challenges. The objective of this project is to engineer a novel precision fabrication system based on electrospinning for generation of highly aligned fiber scaffolds for muscle regeneration. Our system was based on a custom-made rotating collector made of parallel metal blades to combine the advantages of both the mechanical and electrical forces for fiber alignment. Solutions of widely investigated degradable polyesters were spun under optimized electrospinning conditions to produce aligned fibers in between the parallel blades. Fiber alignment and average fiber diameter were determined by microscopy in combination with ImageJ software. Our study demonstrated the potential of using this novel rotating collector to produce aligned polymeric scaffolds in an effective and controllable manner. Future in vitro and in vivo studies will be performed to optimize the scaffold properties and determine cellular response to these scaffolds for muscle regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma

Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...

متن کامل

Design and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma

Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...

متن کامل

A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application

Objecttive (s): Polyvinylalcohol (PVA) is among the most natural polymers which have interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing.Materials and Methods: In the current work, PVA and Na-Alginate nanocomposite scaffolds were prepared using the electrospinn...

متن کامل

بررسی اثرات پانسمانهای نانوفیبری حاوی کیتوزان در ترمیم زخم در مدل موش سوری

Background & Aims: Wound healing and tissue regeneration are big challenges in medicine. The type of wound dressing has great impact on wound treatment and prevention of superficial infection and scar formation. Wound dressings containing growth factor, antibiotic, antiseptic and antioxidant have great influence in reducing wound scar and accelerating wound healing procedure. Electrospinning is...

متن کامل

Fabrication, Characterization and Process Parameters Optimization of Electrospun 58S Bioactive Glass Submicron Fibers

Over the past decades, bioactive glass (BG) has been of a great interest in the bone regeneration field, due to its excellent biocompatibility, bioactivity and osteoconductivity. Herein, fabrication of bioactive glass as one-dimensional fibers by employing an Electrospinning process is reported. The Sol-Gel method was chosen considering the final fibers smoothness and homogeneity. Starting sol ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014